Non-coercive Lyapunov functions for infinite-dimensional systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global converse Lyapunov theorems for infinite-dimensional systems

We show that existence of a non-coercive Lyapunov function is sufficient for uniform global asymptotic stability (UGAS) of infinite-dimensional systems with external disturbances provided an additional mild assumption is fulfilled. For UGAS infinite-dimensional systems with external disturbances we derive a novel ’integral’ construction of non-coercive Lipschitz continuous Lyapunov functions. F...

متن کامل

LMI parametrization of Lyapunov Functions for Infinite-Dimensional Systems: A Toolbox

Abstract— In this paper, we present an algorithmic approach to the construction of Lyapunov functions for infinitedimensional systems. This paper unifies and extends many previous results which have appeared in conference and journal format. The unifying principle is that a linear matrix parametrization of operators in Hilbert space inevitably leads to a linear parametrization of positive forms...

متن کامل

Transfer functions for infinite-dimensional systems

where A is the infinitesimal generator of the C0-semigroup T (t) on the state space X, B is a bounded linear operator from input space U to X, C is a bounded linear operator from X to the output space Y , and D is a bounded operator from U to Y . The spaces X, U and Y are assumed to be Banach spaces. More detail on the system (1) can be found in Curtain and Zwart [1]. For the system (1) we intr...

متن کامل

On ISS-Lyapunov functions for infinite-dimensional linear control systems subject to saturations

This article deals with the derivation of ISSLyapunov functions for infinite-dimensional linear systems subject to saturations. Two cases are considered: 1) the saturation acts in the same space as the control space; 2) the saturation acts in another space, especially a Banach space. For the first case, an explicit ISS-Lyapunov function can be derived. For the second case, we can only ensure th...

متن کامل

Observing Lyapunov Exponents of Infinite-dimensional Dynamical Systems.

Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2019

ISSN: 0022-0396

DOI: 10.1016/j.jde.2018.11.026